Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/23) | Q#7

    Question The diagram shows the curve and its maximum point M.      i.       Find the exact coordinates of M.    ii.       Use the trapezium rule with three intervals to estimate the value of giving your answer correct to 2 decimal places. Solution      i.   We are required to find the […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/22) | Q#8

  Question The diagram shows the curve , for . The point  lies on the curve. i.       Show that the normal to the curve at Q passes through the point .    ii.       Find .   iii.       Hence evaluate Solution      i.   If a point P(x,y) lies on a line (or […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/22) | Q#4

  Question The parametric equations of a curve are for t > 2.      i.       Show that in terms of t.      ii.       Find the coordinates of the only point on the curve at which the gradient of the curve is equal  to 0. Solution      i.   We are required to find […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/21) | Q#8

  Question The diagram shows the curve , for . The point  lies on the curve.     i.       Show that the normal to the curve at Q passes through the point .    ii.       Find .   iii.       Hence evaluate Solution      i.   If a point P(x,y) lies on a line […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/21) | Q#4

  Question The parametric equations of a curve are for t > 2.      i.       Show that in terms of t.      ii.       Find the coordinates of the only point on the curve at which the gradient of the curve is equal  to 0. Solution      i.   We are required to find […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | May-Jun | (P2-9709/23) | Q#5

  Question The equation of a curve y=x3e-x.      i.       Show that the curve has a stationary point where x = 3.    ii.       Find the equation of the tangent to the curve at the point where x = 1. Solution      i.   We are required to show that the curve has […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | May-Jun | (P2-9709/22) | Q#5

    Question The equation of a curve y=x3e-x.      i.       Show that the curve has a stationary point where x = 3.    ii.       Find the equation of the tangent to the curve at the point where x = 1. Solution      i.   We are required to show that the curve […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | May-Jun | (P2-9709/21) | Q#8

Question      i.       By differentiating , show that if y = cot x then    ii.       By expressing in terms of and using the result of part (i), show that   iii.       Express cos 2x in terms of sin2 x and hence show that can be expressed as .  Hence using the […]