Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | Oct-Nov | (P1-9709/01) | Q#9

Question The diagram shows an open container constructed out of 200 cm2 of cardboard. The two vertical end pieces are isosceles triangles with sides  cm,  cm and  cm, and the two side pieces are rectangles of length  cm and width  cm, as shown. The open top is a horizontal rectangle.      i.       Show that      ii.       Show that the volume,  cm3, of the […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | May-Jun | (P1-9709/01) | Q#10

Question The diagram shows the curve , where  is a constant. The curve has a minimum point on the x-axis.      i.       Find the value of .    ii.       Find the coordinates of the maximum point of the curve.   iii.       State the set of values of  for which  is a decreasing function of .   iv.       Find the area of the shaded region. […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | Oct-Nov | (P1-9709/01) | Q#8

Question The equation of a curve is  . i.       Calculate the gradient of the curve at the point where x = 1.    ii.       A point with coordinates (x, y) moves along the curve in such a way that the rate of increase of y has a constant value of 0.02 units per second. Find the rate of increase of x when […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | Oct-Nov | (P1-9709/01) | Q#7

  Question The diagram shows the curve y = x(x − 1)(x − 2), which crosses the x-axis at the points O(0, 0), A(1, 0) and B(2, 0).     i.       The tangents to the curve at the points A and B meet at the point C. Find the x-coordinate of C.    ii.       Show by integration that the area of the shaded region […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | May-Jun | (P1-9709/01) | Q#9

Question A curve is such that  and P (1, 8) is a point on the curve. i.       The normal to the curve at the point P meets the coordinate axes at Q and at R. Find the coordinates of the mid-point of QR.    ii.   Find the equation of the curve. Solution      i.   To find the mid-point […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | May-Jun | (P1-9709/01) | Q#1

Question A curve has equation . . Given that the gradient of the curve is −3 when x = 2, find the value of the constant k. Solution Gradient (slope) of the curve is the derivative of equation of the curve. Hence gradient of curve  with respect to  is: In this case; Therefore; We can rewrite the expression; Rule for […]