# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | Oct-Nov | (P2-9709/02) | Q#6

Question The diagram shows the part of the curve  for , and its minimum point M.      i.       Find the coordinates of M.    ii.       Use the trapezium rule with 2 intervals to estimate the value of Giving your answer correct to 1 decimal place.   iii.       State, with a reason, whether the […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | May-Jun | (P2-9709/02) | Q#5

Question The equation of a curve is 3×2 + 2xy + y2 = 6. It is given that there are two points on the curve where the tangent is parallel to the x-axis. i.       Show by differentiation that, at these points, y = −3x. ii.       Hence find the coordinates of the two […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | Oct-Nov | (P2-9709/02) | Q#1

Question Solve the inequality . Solution SOLVING INEQUALITY: PIECEWISE Let, . We can write it as; We have to consider both moduli separately and it leads to following cases; When If then above four intervals translate to following with their corresponding inequality; When When When If then above four intervals translate to following […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | May-Jun | (P2-9709/02) | Q#1

Question Solve the inequality . Solution SOLVING INEQUALITY: PIECEWISE Let  and , then; We have to consider two separate cases; When When We have the inequality; It can be written as; We have to consider two separate cases; When When Therefore the inequality will hold for ; SOLVING INEQUALITY: ALGEBRAICALLY Let, . Since given […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | Oct-Nov | (P1-9709/01) | Q#7

Question The diagram shows the curve y = x(x − 1)(x − 2), which crosses the x-axis at the points O(0, 0), A(1, 0) and B(2, 0).     i.       The tangents to the curve at the points A and B meet at the point C. Find the x-coordinate of C.    ii.       Show by integration that the area of the shaded region […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | Oct-Nov | (P1-9709/01) | Q#5

Question The three points A(1, 3), B(13, 11) and C(6, 15) are shown in the diagram. The perpendicular from C to AB meets AB at the point D. Find i.       the equation of CD,    ii.       the coordinates of D. Solution      i.   To find the equation of the line either we need coordinates of the two points on the line […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | May-Jun | (P1-9709/01) | Q#9

Question A curve is such that  and P (1, 8) is a point on the curve. i.       The normal to the curve at the point P meets the coordinate axes at Q and at R. Find the coordinates of the mid-point of QR.    ii.   Find the equation of the curve. Solution      i.   To find the mid-point […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2006 | May-Jun | (P1-9709/01) | Q#5

Question The curve  intersects the line  at two points. Find the distance between the two points. Solution Expression to find distance between two given points  and is: So first we need to find the coordinates of points of intersection of the curve and the line. If two lines (or a line and a curve) intersect each other […]