# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2013 | Oct-Nov | (P1-9709/13) | Q#8

Question      i.       Find the coefficient of  in the expansion of .    ii.       Find the coefficient of  in the expansion of .   iii.       Hence find the coefficient of  in the expansion of . Solution i.   Expression for the general term in the Binomial expansion of  is: In the given case: Hence; Since we are looking for the term of   : […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2013 | Oct-Nov | (P1-9709/11) | Q#1

Question i.       Find the first three terms in the expansion of  in ascending powers of . ii.    In the expansion of  , the coefficient of  is zero, find the value of . Solution i.   Expression for the Binomial expansion of  is: In the given case: Hence; ii.   To find the value of  in the expansion of  First we know from (i) […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2013 | May-Jun | (P1-9709/13) | Q#4

Question      i.       Find the first three terms in the expansion of  in ascending powers of .    ii.       Given that coefficient of  in the expansion of is 240, find the possible values of . Solution i.   Expression for the Binomial expansion of  is: In the given case: Hence; ii.   To find the value of  in the expansion of  First we know […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2013 | May-Jun | (P1-9709/12) | Q#2

Question Find the coefficient of  in the expansion of      i.           ii.       Solution i.   First rewrite the given expression in standard form. Expression for the general term in the Binomial expansion of  is: In the given case: Hence; Since we are looking for the coefficient of the term : we can  equate Finally substituting  in: Therefore the […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2013 | May-Jun | (P1-9709/11) | Q#2

Question      i.       In the expression ,  is non-zero constant. Find the first 3 terms in the expansion of , in ascending powers of .    ii.       It is given that the coefficient of  in the expansion of  is zero. Find the value of . Solution i.   First rewrite the given expression in standard form. Expression for the Binomial […]