Hits: 301

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | May-Jun | (P2-9709/02) | Q#6

Hits: 301   Question The equation of a curve is        i.       Show, by differentiation, that the gradient of the curve is always negative.    ii.       Use the trapezium rule with 2 intervals to estimate the value of giving your answer correct to 2 significant figures.     iii.   The diagram […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | Oct-Nov | (P2-9709/02) | Q#7

Hits: 331 Question      i.       By differentiating  , show that if y = cot x then    ii.       Hence, show that   By using appropriate trigonometrical identities, find the exact value of     iii.     iv.   Solution      i.   We are given; Gradient (slope) of the curve is the derivative of equation of the curve. Hence […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | Oct-Nov | (P2-9709/02) | Q#4

Hits: 202 Question i.       Express  in the form , where  and , giving exact  value of . ii.       Hence show that one solution of the equation , and find the other solution in the interval 0 < θ < 2π. Solution      i.   We are given that; We are required to write it in the form; If  and […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | May-Jun | (P2-9709/02) | Q#7

Hits: 370 Question The parametric equations of a curve are      i. Show that    ii. Find the equation of the tangent to the curve at the point where .   iii. For the part of the curve where , find the coordinates of the points where the tangent  is parallel to the x-axis. Solution      i.   We are required to […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | May-Jun | (P2-9709/02) | Q#4

Hits: 232 Question i. Show that the equation Can be written in the form ii. Hence solve the equation to For . Solution i. We are given; We apply following two addition formulae on both sides of given equation. Therefore; Since; ii. We are required to solve following equation doe . We have found in […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2002 | Oct-Nov | (P2-9709/02) | Q#4

Hits: 277   Question      i.       By sketching a suitable pair of graphs, show that there is only one value of x in  the interval    that is a root of the equation    ii.       Verify by calculation that this root lies between 1 and 1.5.   iii.       Show that this value of x is also a root of the equation   iv.       Use […]