Hits: 512

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2008 | Oct-Nov | (P1-9709/01) | Q#5

Hits: 512   Question The function f is such that  for , where  and  are positive constants. The maximum value of  is 10 and the minimum value is −2.      i.       Find the values of  and .    ii.       Solve the equation .   iii.       Sketch the graph of . Solution i.   We have the function; We know that; For ; […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2008 | Oct-Nov | (P1-9709/01) | Q#9

Hits: 4011   Question The diagram shows the curve  and the points P(0,1) and Q(1,2) on the curve. The shaded region is bounded by the curve, the y-axis and the line y = 2.     i.       Find the area of the shaded region.    ii.       Find the volume obtained when the shaded region is rotated through 360◦ about the x-axis. Tangents are drawn […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2008 | May-Jun | (P1-9709/01) | Q#2

Hits: 378 Question      i.       Show that the equation  can be written in the  form .    ii.       Hence solve the equation , for . Solution i.   We are given the equation; We can rewrite it as; We have the trigonometric relation; Substituting  in the above equation; We have the trigonometric identity; We can rewrite this as; Therefore; ii.   To solve  equation for […]