Hits: 117

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2015 | Oct-Nov | (P2-9709/23) | Q#7

Hits: 117 Question The equation of a curve is      i.       Show that;    ii.       Find the x-coordinate of each stationary point of the curve in the interval . Give each answer correct to 3 significant figures. Solution      i.   We are required to show that; We are given; We utilize Quotient Rule to […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2015 | Oct-Nov | (P2-9709/23) | Q#4

Hits: 43 Question     i.       Find the quotient when   is divided by  ,  and show that the remainder  is 39.    ii.       Hence, show that the equation  has exactly one real root. Solution      i.   Hence quotient is and remainder is .    ii.   We are required to factorise; When a polynomial, , […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2015 | Oct-Nov | (P2-9709/21) | Q#6

Hits: 53 Question i.       Find the quotient and remainder when is divided by .    ii.       It is given that, when is divided by , the remainder is ZERO. Find the values of the constants  and .   iii.       When  and have these values, show that there is exactly one real value of satisfying the  […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2015 | Oct-Nov | (P2-9709/23) | Q#2

Hits: 94   Question      i.       Solve the equation .    ii.       Hence, using logarithms, solve the equation , giving the answer correct to  3 significant figures. Solution i.   SOLVING EQUATION: PIECEWISE Let, . We have to consider both moduli separately and it leads to following cases;  OR We have the equation; […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2015 | Oct-Nov | (P2-9709/22) | Q#1

Hits: 169   Question      i.       Solve the equation .    ii.       Hence, using logarithms, solve the equation , giving the answer correct to 3  significant figures. Solution     SOLVING EQUATION: ALGEBRAICALLY i.   Let, . We can write it as; We have to consider two separate cases; When When We have the […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2015 | May-Jun | (P2-9709/21) | Q#1

Hits: 368   Question      i.       Solve the equation .    ii.       Hence, using logarithms, solve the equation , giving the answer  correct to 3 significant figures. Solution i.   SOLVING EQUATION: PIECEWISE Let, . We have to consider both moduli separately and it leads to following cases;  OR We have the equation; […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2015 | Oct-Nov | (P1-9709/13) | Q#8

Hits: 798 Question The function  is defined by  for , where a is a constant. The function  is  defined  for .      i.       Find the largest value of a for which the composite function can be formed. For the case where ,    ii.       solve the equation ,   iii.       find the set of values of  which satisfy the inequality . Solution i. […]

# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2015 | Oct-Nov | (P1-9709/13) | Q#3

Hits: 546 Question i.       Express  in the form , where a, b and c are constants.  ii.   The function, where , is defined for . Find  and state, with       a reason, whether  is an increasing function, a decreasing function or neither. Solution i.   We have the expression; We use method of “completing square” to obtain […]