Hits: 13

Please follow and like us:
0

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/23) | Q#4

Hits: 13   Question a.   Find . b.   Express  in terms of  and hence find . Solution a.     We are required to find; Rule for integration of , or ; b.     We know that , therefore; Hence; Therefore; Rule for integration of  is: Rule for integration of  is: Rule for integration of  is: […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/22) | Q#8

Hits: 6   Question The diagram shows the curve , for . The point  lies on the curve. i.       Show that the normal to the curve at Q passes through the point .    ii.       Find .   iii.       Hence evaluate Solution      i.   If a point P(x,y) lies on a […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/21) | Q#8

Hits: 2   Question The diagram shows the curve , for . The point  lies on the curve.     i.       Show that the normal to the curve at Q passes through the point .    ii.       Find .   iii.       Hence evaluate Solution      i.   If a point P(x,y) lies on […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | May-Jun | (P2-9709/23) | Q#4

Hits: 1   Question a.   Show that b.   By using an appropriate trigonometrical identity, find the exact value of Solution a.     We are required to show that; Rule for integration of  is: b.     We are required to find exact value of; We know that , therefore; Hence; Rule for integration of  is: Rule […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | May-Jun | (P2-9709/22) | Q#4

Hits: 1     Question a.   Show that b.   By using an appropriate trigonometrical identity, find the exact value of Solution a.     We are required to show that; Rule for integration of  is:   b.     We are required to find exact value of; We know that , therefore; Hence; Rule for integration of […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | May-Jun | (P2-9709/21) | Q#8

Hits: 5 Question      i.       By differentiating , show that if y = cot x then    ii.       By expressing in terms of and using the result of part (i), show that   iii.       Express cos 2x in terms of sin2 x and hence show that can be expressed as .  Hence […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | Oct-Nov | (P2-9709/22) | Q#8

Hits: 19     Question a.   Find the exact value of b.   Show that Solution a.     We are required to find exact value of; Rule for integration of  is: Rule for integration of  is: Rule for integration of  is: b. We are required to show that; Rule for integration of  is: Rule for integration […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | Oct-Nov | (P2-9709/21) | Q#5

Hits: 3 Question     i.       Express  in terms of .    ii.       Hence find the exact value of . Solution      i.   We are given that  and we are required to express it in terms of . Let us start from . We can write  as; We have the trigonometric identity;    […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | May-Jun | (P2-9709/02) | Q#8

Hits: 10     Question a)   Find the equation of the tangent to the curve at the point where . b)                  i.       Find the value of the constant A such that           ii.       Hence show that Solution a.     We are given that curve with […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2008 | May-Jun | (P2-9709/02) | Q#8

Hits: 11   Question The constant , where , is such that     i.       Find an equation satisfied by , and show that it can be written in the form ii.       Verify, by calculation, that the equation  ) has a root between 3 and 3.5.    iii.       Use the iterative […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2007 | Oct-Nov | (P2-9709/02) | Q#8

Hits: 18   Question The diagram shows the curve and its maximum point M.      i.       Find the x-coordinate of M.    ii.       Show that the tangent to the curve at the point where x = 1 passes through the origin.   iii.       Use the trapezium rule with two intervals to estimate […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2007 | Oct-Nov | (P2-9709/02) | Q#7

Hits: 14     Question      i.       Prove the identity    ii.       Using the identity, or otherwise, find the exact value of Solution      i.   We are given that; We have algebraic formula; Since we know that ; We have the trigonometric identity; From this we can write ; Since we know […]