Hits: 40

Please follow and like us:
0

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | May-Jun | (P2-9709/02) | Q#6

Hits: 40   Question The equation of a curve is        i.       Show, by differentiation, that the gradient of the curve is always negative.    ii.       Use the trapezium rule with 2 intervals to estimate the value of giving your answer correct to 2 significant figures.     iii.   The diagram […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2004 | May-Jun | (P2-9709/02) | Q#5

Hits: 6     Question The diagram shows the part of the curve y = xe-x for , and its maximum point M.      i.       Find the x-coordinate of M.    ii.       Use the trapezium rule with two intervals to estimate the value of giving your answer correct to 2 decimal places.   […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2005 | May-Jun | (P2-9709/02) | Q#6

Hits: 3     Question The diagram shows the part of the curve  for . The curve cuts the x-axis at A and  its maximum point is M.      i.       Write down the coordinates of A.    ii.       Show that the x-coordinate of M is e, and write down the y-coordinate of M […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2007 | May-Jun | (P2-9709/02) | Q#7

Hits: 6     Question The diagram shows the part of the curve y=ex cos x for . The curve meets the y-axis at the  point A. The point M is a maximum point. i. Write down the coordinates of A. ii. Find the x-coordinate of M. iii. Use the trapezium rule with three intervals […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2008 | Oct-Nov | (P2-9709/02) | Q#6

Hits: 8     Question Find the exact coordinates of the point on the curve   at which . Solution We are given that; We are required to find; Second derivative is the derivative of the derivative. If we have derivative of the curve   as , then  expression for the second derivative of the curve […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2008 | May-Jun | (P2-9709/02) | Q#7

Hits: 8   Question The equation of the curve is .     i.       Show that    ii.       Find the coordinates of each of the points on the curve where the tangent is parallel to the x- axis. Solution      i.   We are given; We are required to find . To find from […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2008 | May-Jun | (P2-9709/02) | Q#6

Hits: 5     Question It is given that the curve has one stationary point.      i.       Find the x-coordinates of this point.    ii.       Determine whether this point is a maximum or a minimum point. Solution      i.   We are required to find the coordinates of stationary point of the curve; […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2007 | Oct-Nov | (P2-9709/02) | Q#4

Hits: 10     Question The equation of a curve is y = 2x − tan x, where x is in radians. Find the coordinates of the stationary points of the curve for which Solution We are required to find the coordinates of stationary points of the curve with equation; A stationary point on the […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2007 | May-Jun | (P2-9709/02) | Q#3

Hits: 5   Question The parametric equations of a curve are for t > 1.      i.       Express in terms of t.     ii.       Find the coordinates of the only point on the curve at which the gradient of the curve is equal to 1. Solution      i.   We are required […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | Oct-Nov | (P2-9709/02) | Q#7

Hits: 2     Question      i.       Given that y = tan 2x, find .    ii.       Hence, or otherwise, show that and, by using an appropriate trigonometrical identity, find the exact value of   iii.       Use the identity cos 4x ≡ 2cos2 2x − 1 to find the exact value of […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | Oct-Nov | (P2-9709/02) | Q#6

Hits: 5     Question The diagram shows the part of the curve  for , and its minimum point M.      i.       Find the coordinates of M.    ii.       Use the trapezium rule with 2 intervals to estimate the value of Giving your answer correct to 1 decimal place.   iii.       State, […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | May-Jun | (P2-9709/02) | Q#7

Hits: 10 Question      i.       Differentiate ln(2x + 3).    ii.       Hence, or otherwise, show that   iii.       Find the quotient and remainder when 4×2 + 8x is divided by 2x + 3.   iv.       Hence show that Solution      i.   We are required to find; If we define , […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | May-Jun | (P2-9709/02) | Q#5

Hits: 4   Question The equation of a curve is 3×2 + 2xy + y2 = 6. It is given that there are two points on the curve where the tangent is parallel to the x-axis. i.       Show by differentiation that, at these points, y = −3x. ii.       Hence find the coordinates of […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | May-Jun | (P2-9709/02) | Q#3

Hits: 19    Question The equation of a curve is y = x + 2cos x. Find the x-coordinates of the stationary points of the  curve for 0 ≤ x ≤ 2π, and determine the nature of each of these stationary points. Solution We are required to find the x-coordinates of stationary points of the […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2005 | Oct-Nov | (P2-9709/02) | Q#7

Hits: 168     Question The diagram shows the part of the curve y = sin2 x for  .      i.       Show that    ii.       Hence find the x-coordinates of the points on the curve at which the gradient of the curve is  0.5.   iii.       By expressing sin2 x in terms […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2005 | Oct-Nov | (P2-9709/02) | Q#6

Hits: 63     Question A curve is such that . The point (0, 1) lies on the curve.      i. Find the equation of the curve.    ii. The curve has one stationary point. Find the x-coordinate of this point and determine whether it  is a maximum or a minimum point. Solution      i. […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2005 | Oct-Nov | (P2-9709/02) | Q#4

Hits: 62 Question The equation of the curve is .     i.       Show that    ii.       Find the equation of the tangent to the curve at the point (2, 4), giving your answer in the form ax+by=c. Solution      i.   We are given that; Therefore; Rule for differentiation of  is: If  and […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2004 | Oct-Nov | (P2-9709/02) | Q#8

Hits: 52   Question i.       Express  in the form , where  and , giving the exact values of R and .    ii.       Hence show that   iii.       By differentiating , show that if  then .   iv.       Using the results of parts (ii) and (iii), show that Solution      i. […]