Hits: 100

Please follow and like us:
error0

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/22) | Q#8

Hits: 100   Question The diagram shows the curve , for . The point  lies on the curve. i.       Show that the normal to the curve at Q passes through the point .    ii.       Find .   iii.       Hence evaluate Solution      i.   If a point P(x,y) lies on a […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | Oct-Nov | (P2-9709/21) | Q#8

Hits: 23   Question The diagram shows the curve , for . The point  lies on the curve.     i.       Show that the normal to the curve at Q passes through the point .    ii.       Find .   iii.       Hence evaluate Solution      i.   If a point P(x,y) lies on […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2010 | May-Jun | (P2-9709/21) | Q#8

Hits: 20 Question      i.       By differentiating , show that if y = cot x then    ii.       By expressing in terms of and using the result of part (i), show that   iii.       Express cos 2x in terms of sin2 x and hence show that can be expressed as .  Hence […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | Oct-Nov | (P2-9709/22) | Q#7

Hits: 32   Question The diagram shows the curve y = x2 cos x, for , and its maximum point M.     i.       Show by differentiation that the x-coordinate of M satisfies the equation    ii.       Verify by calculation that this equation has a root (in radians) between 1 and 1.2.   iii. […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | May-Jun | (P2-9709/02) | Q#6

Hits: 89   Question The equation of a curve is        i.       Show, by differentiation, that the gradient of the curve is always negative.    ii.       Use the trapezium rule with 2 intervals to estimate the value of giving your answer correct to 2 significant figures.     iii.   The diagram […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2007 | May-Jun | (P2-9709/02) | Q#7

Hits: 36     Question The diagram shows the part of the curve y=ex cos x for . The curve meets the y-axis at the  point A. The point M is a maximum point. i. Write down the coordinates of A. ii. Find the x-coordinate of M. iii. Use the trapezium rule with three intervals […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2007 | Oct-Nov | (P2-9709/02) | Q#4

Hits: 27     Question The equation of a curve is y = 2x − tan x, where x is in radians. Find the coordinates of the stationary points of the curve for which Solution We are required to find the coordinates of stationary points of the curve with equation; A stationary point on the […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | Oct-Nov | (P2-9709/02) | Q#7

Hits: 11     Question      i.       Given that y = tan 2x, find .    ii.       Hence, or otherwise, show that and, by using an appropriate trigonometrical identity, find the exact value of   iii.       Use the identity cos 4x ≡ 2cos2 2x − 1 to find the exact value of […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2006 | May-Jun | (P2-9709/02) | Q#3

Hits: 40    Question The equation of a curve is y = x + 2cos x. Find the x-coordinates of the stationary points of the  curve for 0 ≤ x ≤ 2π, and determine the nature of each of these stationary points. Solution We are required to find the x-coordinates of stationary points of the […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2005 | Oct-Nov | (P2-9709/02) | Q#7

Hits: 180     Question The diagram shows the part of the curve y = sin2 x for  .      i.       Show that    ii.       Hence find the x-coordinates of the points on the curve at which the gradient of the curve is  0.5.   iii.       By expressing sin2 x in terms […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2004 | Oct-Nov | (P2-9709/02) | Q#8

Hits: 61   Question i.       Express  in the form , where  and , giving the exact values of R and .    ii.       Hence show that   iii.       By differentiating , show that if  then .   iv.       Using the results of parts (ii) and (iii), show that Solution      i. […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | Oct-Nov | (P2-9709/02) | Q#7

Hits: 97 Question      i.       By differentiating  , show that if y = cot x then    ii.       Hence, show that   By using appropriate trigonometrical identities, find the exact value of     iii.     iv.   Solution      i.   We are given; Gradient (slope) of the curve is the derivative of equation of the curve. Hence […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2003 | May-Jun | (P2-9709/02) | Q#7

Hits: 79 Question The parametric equations of a curve are      i. Show that    ii. Find the equation of the tangent to the curve at the point where .   iii. For the part of the curve where , find the coordinates of the points where the tangent  is parallel to the x-axis. Solution      i.   We are required to […]