Hits: 153

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | Feb-Mar | (P2-9709/22) | Q#7

Hits: 153 Question The equation of a curve is 2×3+y3=24      i.       Express in terms of x and y, and show that the gradient of the curve is never positive.    ii.       Find the coordinates of the two points on the curve at which the gradient is −2. Solution      i.   Gradient (slope) of […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | Feb-Mar | (P2-9709/22) | Q#6

Hits: 59   Question The diagram shows the part of the curve  for , and the stationary point M.        i.       Find the equation of the tangent to the curve at the origin.    ii.       Find the coordinates of M, giving each coordinate correct to 3 decimal places. Solution      i.   We are […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | Oct-Nov | (P2-9709/23) | Q#6

Hits: 74 Question A curve has parametric equations      i.       Find an expression for in terms of t.    ii.       Find the exact value of at the stationary point.   iii.       Find the gradient of the curve at the point where it crosses the x-axis. Solution      i.   We are required to find  for […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | Oct-Nov | (P2-9709/22) | Q#7

Hits: 94 Question The diagram shows the curve with parametric equations for .     i.       Show that can be expressed in the form    ii.       Find the equation of the normal to the curve at the point where the curve crosses the positive y-axis. Give your answer in the form y = mx +c, where […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | Oct-Nov | (P2-9709/22) | Q#5

Hits: 135 Question The diagram shows the curve and its stationary point M. The x-coordinate of M is m.       i.       Find an expression for and hence show that .    ii.       Use an iterative formula based on the equation in part (i) to find the value of m correct to 4  significant figures. Give […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | Oct-Nov | (P2-9709/21) | Q#3

Hits: 210 Question A curve has equation y = 2 sin 2x − 5 cos 2x +6 and is defined for 0 ≤ x ≤ π. Find the x-coordinates of the stationary points of the curve, giving your answers correct to 3 significant figures. Solution We are required to find the x-coordinates of stationary points […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | May-Jun | (P2-9709/23) | Q#7

Hits: 98 Question The diagram shows the curve with parametric equations for . The minimum point is M and the curve crosses the x-axis at points P and Q.     i.       Show that .    ii.       Find the coordinates of M.   iii.       Find the gradient of the curve at P and at Q. Solution […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | May-Jun | (P2-9709/23) | Q#5

Hits: 45 Question The equation of a curve is  . At the point on the curve with x-coordinate p, the gradient of  the curve is .      i.       Show that .      ii.       Show by calculation that 3.3 < p < 3.5.     iii.       Use an iterative formula based on the equation in […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | May-Jun | (P2-9709/22) | Q#7

Hits: 133 Question The diagram shows the curve with parametric equations for . The minimum point is M and the curve crosses the x-axis at points P and Q.     i.       Show that .    ii.       Find the coordinates of M.   iii.       Find the gradient of the curve at P and at Q. Solution […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | May-Jun | (P2-9709/22) | Q#5

Hits: 98 Question The equation of a curve is  . At the point on the curve with x-coordinate p, the gradient of  the curve is .      i.       Show that .      ii.       Show by calculation that 3.3 < p < 3.5.     iii.       Use an iterative formula based on the equation in […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | May-Jun | (P2-9709/21) | Q#6

Hits: 102 Question The equation of a curve is  . At the point on the curve with positive x-coordinate p, the gradient of the curve is .        i.       Show that .      ii.       Show by calculation that 2 < p < 3.     iii.       Use an iterative formula based on the equation […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | May-Jun | (P2-9709/21) | Q#5

Hits: 115 Question A curve is defined by the parametric equations for .       i.       Show that .    ii.       Find the coordinates of the stationary point.   iii.       Find the gradientof the curve at point . Solution      i.   We are required to show that  for the parametric equations given below; If […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2016 | May-Jun | (P2-9709/21) | Q#1

Hits: 104 Question Find the gradient of the curve at the point for which x = 0. Solution Gradient (slope) of the curve is the derivative of equation of the curve. Hence gradient of curve with respect to  is: We are given that; Therefore; Rule for differentiation of  is: Rule for differentiation of natural exponential […]

Past Papers’ Solutions | Assessment & Qualification Alliance (AQA) | AS & A level | Mathematics 6360 | Pure Core 1 (6360-MPC1) | Year 2016 | June | Q#8

Hits: 40   Question The gradient, , at the point (x,y) on a curve is given by a.                        i.               Find                   ii.               The curve passes through the point . Verify that the curve has a minimum point at P. b.                       i.               Show that at the points on the curve where y is decreasing                   ii.               Solve the inequality Solution a.   We are given;                     i. […]

Past Papers’ Solutions | Assessment & Qualification Alliance (AQA) | AS & A level | Mathematics 6360 | Pure Core 1 (6360-MPC1) | Year 2016 | June | Q#7

Hits: 116   Question The diagram shows the sketch of a curve and the tangent to the curve at P. The curve has equation  and the point P(-2,24) lies on the curve. The tangent at P  crosses the x-axis at Q. a.                       i.               Find the equation of the […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2016 | Oct-Nov | (P1-9709/13) | Q#11

Hits: 2782   Question A curve has equation , where k is a non-zero constant.      i.       Find the x-coordinates of the stationary points in terms of k, and determine the nature of each  stationary point, justifying your answers.    ii.   The diagram shows part of the curve for the case when k = 1. Showing all necessary working, […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2016 | Oct-Nov | (P1-9709/13) | Q#10

Hits: 938   Question A curve is such that  , where a is a positive constant. The point A(a2, 3) lies on the  curve. Find, in terms of a,      i.       the equation of the tangent to the curve at A, simplifying your answer,    ii.       the equation of the curve.  It is now given that B(16,8) also lies on the curve. […]