Past Papers’ Solutions  Edexcel  AS & A level  Mathematics  Core Mathematics 1 (C16663A/01)  Year 2014  January  Q#6
Hits: 102
Question
The straight line has equation 2y = 3x + 7.
The line crosses the yaxis at the point A as shown in Figure.
a.
i. State the gradient of .
ii. Write down the coordinates of the point A.
Another straight line intersects at the point B (1, 5) and crosses the xaxis at the point C, as shown in Figure.
Given that ,
b. find an equation of in the form ax + by + c = 0, where a, b and c are integers.
The rectangle ABCD, shown shaded in Figure, has vertices at the points A, B, C and D.
c. Find the exact area of rectangle ABCD.
Solution
a.
i.
We are given equation of line ;
We are required to find the gradient of .
SlopeIntercept form of the equation of the line;
Where is the slope of the line.
Therefore, we can rearrange the given equation of line in slopeintercept form, as follows, to find the gradient of the line.
Hence, gradient of the line is;
ii.
We are required to find the coordinates of the point A which is yintercept of line .
The point at which curve (or line) intercepts yaxis, the value of . So we can find the value of coordinate by substituting in the equation of the curve (or line).
We substitute x=0 in equation of the line ;
Hence, coordinates of yintercept of the line (point A) are .
b.
We are required to find equation of line .
To find the equation of the line either we need coordinates of the two points on the line (TwoPoint form of Equation of Line) or coordinates of one point on the line and slope of the line (PointSlope form of Equation of Line).
We have coordinates of a point B(1,5) on line but not slope of the line .
Next we need slope of the line to write its equation.
We are given that the line is perpendicular to .
If two lines are perpendicular (normal) to each other, then product of their slopes and is;
Therefore, if we have slope of line , we can find slope of the line .
From (a), we have found that , therefore;
With coordinates of a point on the line as B(1,5) and its slope at hand, we can write equation of the line .
PointSlope form of the equation of the line is;
c.
We are required to find area of rectangle ABCD.
Expression for the area of the rectangle with length and width is;
It is evident that length of rectangle ABCD is BC and width is AB.
We need to find the distances AB and BC.
Expression for the distance between two given points and is:
We already have coordinates of points A and B but we need to find coordinates of point C.
It is evident that point C is the xintercept of the line .
The point at which curve (or line) intercepts xaxis, the value of . So we can find the value of coordinate by substituting in the equation of the curve (or line).
We have found equation of the line in (b);
We substitute y=0;
Hence, coordinates of point C are .
Now we can find the distances AB and BC.
Coordinates of points A, B and C are respectively as follows;



Therefore;










Hence;
Comments