# Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2016 | May-Jun | (P1-9709/11) | Q#11

Hits: 932

Question

The function  is defined by  for

i.
State the range of .

ii.       Find the coordinates of the points at which the curve  intersects the coordinate                  axes.

iii.       Sketch the graph of .

iv.       Obtain an expression for , stating both the domain and range of .

Solution

i.

The given function is  for .

Domain of  is;

We find the values of  for extreme values of domain of ;

For ;

For ;

Therefore, range of ;

ii.

We are required to find the coordinates of the points at which the curve  intersects the  coordinate axes ie we are looking for x and y intercepts of curve .

Let’s first find coordinates of x-intercept.

The point  at which curve (or line) intercepts x-axis, the value of . So we can find the  value of  coordinate by substituting  in the equation of the curve (or line).

Substitute ;

Hence coordinates of x-intercept are (0.253,0).

Let’s now find coordinates of y-intercept.

The point  at which curve (or line) intercepts y-axis, the value of . So we can find the  value of  coordinate by substituting  in the equation of the curve (or line).

Substitute ;

Hence coordinates of y-intercept are (0,1).

iii.

We are required to sketch    for .

We can find the points of the graph as follows.

We also have coordinates of x and y intercepts of  as (0.253,0) and (0,1),  respectively.

Now we can sketch required graph from these points as shown below.

iv.

We have;

We write it as;

To find the inverse of a given function  we need to write it in terms of  rather than in terms of .

Interchanging ‘x’ with ‘y’;

We are also required to find domain and range of .

Domain and range of a function  become range and domain, respectively, of its inverse function .

Domain of a function  Range of

Range of a function  Domain of

The given function is  for .

We have found in (i) that;

Domain of  is;

Range of ;

Therefore;

Domain of  is;

Range of ;