Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 1 (P1-9709/01) | Year 2011 | May-Jun | (P1-9709/12) | Q#2

Hits: 154

Question

     i.       Find the terms in  and  in the expansion of .

   ii.       Given that there is no term in  in the expansion of , find the value of the constant .

Solution


i.
 

First rewrite the given expression in standard form.

Expression for the Binomial expansion of  is:

In the given case:

Hence;

Hence the required terms in  and  are:

 &  


ii.
 

For the expansion of

First we know from (i) that

Therefore:

 

Since there is no term in i.e coefficient of  is ZERO.

Please follow and like us:
0

Comments