Hits: 97

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | Oct-Nov | (P2-9709/21) | Q#8

Hits: 97     Question The equation of a curve is y2 + 2xy − x2 = 2.      i.       Find the coordinates of the two points on the curve where x = 1.    ii.       Show by differentiation that at one of these points the tangent to the curve is parallel to […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | Oct-Nov | (P2-9709/21) | Q#6

Hits: 100     Question The curve with equation y = x ln x has one stationary point. i.       Find the exact coordinates of this point, giving your answers in terms of e. ii.       Determine whether this point is a maximum or a minimum point. Solution      i.   We are required […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | Oct-Nov | (P2-9709/21) | Q#5

Hits: 71 Question     i.       Express  in terms of .    ii.       Hence find the exact value of . Solution      i.   We are given that  and we are required to express it in terms of . Let us start from . We can write  as; We have the trigonometric identity;    […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | Oct-Nov | (P2-9709/21) | Q#3

Hits: 120   Question The polynomial , where a is a constant, is denoted by . It is given that  is a factor of . i.Find the value of  .    ii. When  has this value, factorise  completely. Solution      i.  We are given that;    We are also given that is a factor of […]

Past Papers’ Solutions | Cambridge International Examinations (CIE) | AS & A level | Mathematics 9709 | Pure Mathematics 2 (P2-9709/02) | Year 2009 | Oct-Nov | (P2-9709/21) | Q#1

Hits: 59     Question Solve the inequality . Solution SOLVING INEQUALITY: PIECEWISE Let, . We can write it as; We have to consider both moduli separately and it leads to following cases; When If then above four intervals translate to following with their corresponding inequality; When When When If then above four intervals translate […]